Calculations Policy

School Responsibility: Miss K. Choma
Headteacher: Miss K. Choma
Governor: Mr Thompson
Adopted: May 2021
Review: May 2023

ETHOS STATEMENT

The School was founded by and is part of the Catholic Church. The School is to be conducted as a Catholic School in accordance with the canon law and teachings of the Catholic Church and in accordance with the Trust Deed of the Diocese of Leeds in particular:

1. Religious education is to be in accordance with the teachings, doctrines, discipline and general and particular norms of the Catholic Church;
2. Religious worship is to be in accordance with the teachings, doctrines, discipline and liturgical norms of the Catholic Church;
3. And at all times the school is to serve as witness to the Catholic faith in our Lord Jesus Christ.

MISSION STATEMENT

St Joseph is our patron saint and he inspires and guides us in our school mission:
Each one of us is part of God's family and we are all special.
As God's children and family we love one another, pray together, play together and walk hand in hand with God.
God is our teacher and we are his gifts. He helps us learn together, work hard and do our best to make our world a better place.
With fun, laughter and friendship we celebrate God's love.
We respect and care for everyone and for God's wonderful world.

As a family with God in our hearts we love, laugh and learn.

Introduction

The ability to calculate in your head is an important part of mathematics; it is also an essential part of coping with society's demands and managing everyday events. At St. Joseph's the aim is for children to apply mental and written strategies confidently and efficiently. The progression of the mental and written calculation skills and the methods and strategies used is documented in this policy. These are based upon the new maths curriculum 2014. Mental and written calculation methods are taught alongside each other throughout the entirety of key stage one and key stage two. When teaching children to calculate, emphasis is placed on choosing and using the method that is most efficient. If a child can complete a calculation mentally or with jottings, they should not be expected to complete a written algorithm.

To support the development of mathematical understanding, we use the process of CPA:
Concrete - physical objects that support the concept of number and calculating number, whether it be conkers, apples or dinosaurs to counters. These physical objects play a fundamental role on giving the children hands on experience of number.

Pictorial - using drawings and pictures to represent the physical objects, therefore developing the visualisation of number and the calculating process. Pictures of apples to pictures of circles may represent number.

Abstract - using symbols to represent number and the calculating process, i.e. $4+6=10$, this relies heavily on the previous experience so that children have a keen understanding of what each symbol means.

The principal focus of mathematics teaching in key stage 1 is to ensure that pupils develop confidence and mental fluency with whole numbers, counting and place value.

The principal focus of mathematics teaching in lower key stage 2 is to ensure that pupils become increasingly fluent with whole numbers and the four operations, including number facts and the concept of place value.

The principal focus of mathematics teaching in upper key stage 2 is to ensure that pupils extend their understanding of the number system and place value to include larger integers. This should develop the connections that pupils make between multiplication and division with fractions, decimals, percentages and ratio.

This document presents the methods and representations across the whole school.
This guidance has been developed from the White Rose Calculation Policy: working document, which was written as a guide to indicate the progression through Addition, Subtraction, Multiplication and Division in Years R-6.

How can parents and carers help?
Every parent and carer can do their bit to help inspire their children to be successful in maths by:

- Show your child that you like the subject giving them the confidence that they can do it too - especially girls.
- Go shopping with real money (not a credit card) so that children can experience using coins, paying bills and experiencing 'change'.

St Joseph's Otley - Calculations Policy

- Let children play maths at home- whether it is using litre jugs in the bath for measuring liquids or weighing ingredients in the kitchen-real life practise really helps children to understand how to estimate measures and apply knowledge.
- Play board games like Snakes and Ladders, Monopoly, Pop to the Shops, Top Trumps etc
- Help children to understand how to use bus or train timetables, maps, co-ordinates by playing 'Battleships'
- Practise telling the time with your child- ask questions: What time is the TV programme they would like to watch? When does it start? When does it finish? How long is it on for?

Links to pages

Addition

EYFS
Year 1
Year 2
Year 3
Year 4
Year 5
Year 6

Subtraction

EYFS
Year 1
Year 2
Year 3
Year 4
Year 5
Year 6

Multiplication

EYFS
Year 1
Year 2
Year 3
Year 4
Year 5
Year 6

Division

EYFS
Year 1
Year 2
Year 3
Year 4
Year 5
Year 6

Addition- EYFS

Vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, balancing, part, part, whole, addend

St Joseph's Otley - Calculations Policy
Finds the total number of items
in two groups by counting all of
them.

St Joseph's Otley - Calculations Policy

St Joseph's Otley - Calculations Policy

Addition- Year 1

Vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, balancing, part, part, whole, addend

Objective and Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use cubes to add two numbers together as a group or in a bar. (Some children may still need to use real objects) Use part-part whole model	Use the pictures to add two numbers together as a group or in a bar. The Bar Model will be continued from EYFS as a method to support problem solving involving addition, continuing with the concrete representations and moving onto using pictorial representations of objects. Some children will also move onto the abstract.	$\begin{aligned} & 2+3=5 \\ & 3+2=5 \\ & 5=3+2 \\ & 5=2+3 \end{aligned}$

St Joseph's Otley - Calculations Policy

Represent and use number bonds and related subtraction facts within 20	(Some children may need to initially use real objects then move onto the representation, egg boxes may also be used to support this)		10 6 4 $6+4=10$ $4+6=10$ $10-4=6$ $10-6=4$ Bar Model Bar model and part-part whole to be used alongside abstract
Addition and subtraction of onedigit and two-digit numbers to 20 including 0.		Start at the larger number on the number line and count on in ones.	$\begin{aligned} & 5+12=17 \\ & 17=12+5 \end{aligned}$
Start at the bigger number and counting on	Start with the larger number on the bead string and then count of to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the greater number on the number line and count on in ones or jump to find the answer and count how many.	Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10 (The 'Make 10' strategy)	Start with the greater number and use the smaller number to make 10.	Use pictures or a number line. Regroup or	If I am at seven, how many more do I need to make 10. How many more do I add on now? $7+\ldots=10$ Learn these known number bonds to 10 to help with addition. $\begin{gathered} 7+\ldots=11 \\ 7+3=10 \\ 10+1=11 \\ 7+\underline{4}=11 \end{gathered}$

St Joseph's Otley - Calculations Policy

		Partition the smaller number using the part part whole model to make 10.	
Addition- Year 2			
Vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, ones, partition, addition, column, tens boundary, addend,			
Objective and Strategy	Concrete	Pictorial	Abstract
Adding 3 1-digit numbers	$4+7+6=17$ Put 4 and 6 together to make 10 . Add on 7 . Following on from making 10, make 10 with two digits (if possible) and then add on the third digit.	together the groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers to make 10 and then add on the remainder.

St Joseph's Otley - Calculations Policy

Adding a 2-digit number and ones	$17+5=22$ Use the ten frame to make 10 - children can then explore the patterns: $\begin{aligned} & 27+5=22 \\ & 37+5=32 \end{aligned}$	Use the part part whole model to help with the number line. $17+5=22$	$17+5=22$ Explore related facts: $\begin{aligned} & 17+5=22 \\ & 5+17=22 \\ & 22-5=17 \\ & 22-17=5 \end{aligned}$
Adding a 2-digit number and multiples of 10	$25+10=35$ Explore that the ones digit does not change	 Base 10 may be used above the number line initially. The calculation will be shown alongside the number line to see the connection.	$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\ldots=57 \\ & +40=67 \\ & \text { (procedural variation fluency) } \end{aligned}$

St Joseph's Otley - Calculations Policy

St Joseph's Otley - Calculations Policy

Addition- Year 3

Vocabulary: addition add, more, and make, sum, total, altogether, double, near double, half, halve, tens boundary, hundreds boundary, exchange
row/box, addend

Objective and Strategy	Concrete	Pictorial	Abstract
Add and subtract numbers with up to 3-digits, using formal written methods of columnar addition Column addition (no regrouping)	 Using manipulatives (Base 10, numicon, counters), children are to line up hundreds, tens and ones. Children should be secure with using PV counters before moving onto pictorial. The calculation will be shown alongside the model used to see the connection (see above)	Children are to draw, in a PV frame, the manipulatives, that they are using. Secure knowledge of representation with the PV columns. The calculation will be shown alongside the model to see the connection.	Children to move onto recording more formally. (Introduce the exchange row/box to column addition for exchanges/regrouping) Some children may need to use the expanded method (see below).

St Joseph's Otley - Calculations Policy

Column addition (with regrouping)		Children can draw a representation of the grid to further support their understanding, exchanging the ten underneath the line.	$\begin{aligned} & 20+5 \\ & 40+8 \\ & \hline 60+13=73 \end{aligned}$ Children are to begin with the abstract: expanded form. For those children, that are confident after AFL, the below method should be used.
	Exchange ten ones for a ten. Model using Dienes, Base 10, Numicon and place value counters.		$\begin{array}{r} H T \\ +542 \\ +108 \\ \hline 10 \\ \hline 660 \\ \hline 6 \end{array}$

St Joseph's Otley - Calculations Policy

Addition- Year 4			
Vocabulary: addition add, more, and make, sum, total, altogether, double, near double, half, halve, tens boundary, hundreds boundary, addend, decimal and decimal point.			
Objective and Strategy	Concrete	Pictorial	Abstract
Using formal written methods of columnar addition where appropriate Add numbers with up to 4 digits (with exchange)	Children continue to use dienes/ Base 10 or place value counters to add, exchanging ten ones for a ten and ten tens for a hundred and ten hundreds for a thousand. The calculation will be shown alongside the manipulative used to see the connection.	Children can draw a pictorial representation of the columns and place value counters to further support their learning and understanding.	 Continue from previous work to exchange thousand and tens column.
Add decimals with 2 decimal places, including money.	Introduce decimal place value counters and model exchange for addition.	$2.37+81.79$ tens ones tents humbeds 00 0000 0000 00000 0 0000 00 000 0000 00060	$\begin{array}{r} £ 29.17 \\ +\begin{array}{l} £ 1.9 \\ \hline \end{array} 1.9 \\ \hline 111 \\ \hline £ 61.0 \\ \hline \end{array}$ As the children move on, introduce decimals with the same number of decimal places and different. Money can be used here.

St Joseph's Otley - Calculations Policy

Addition- Year 5/6

Vocabulary: addition, addend, add, more, and make, sum, total, altogether, double, near double, half, halve, tens boundary, hundreds boundary, decimal, decimal point

St Joseph's Otley - Calculations Policy

Subtrection

Subtraction- EYFS

Vocabulary: minuend, subtrahend, equals, fewer, less, difference, equal to, take, take-away, less, minus, subtract, leaves, distance between, how many more, how many fewer/less than, most, least count back, how many left, how much less is...

Objectives	Concrete	Pictorial	Abstract
Using concrete strategies for counting	Taking away after a counting out objects. Children are encouraged to physically remove these using touch counting. By touch counting and dragging away, it allows children to keep track of how many they are removing so they don't have to keep recounting. They will then touch the among that are left to find the answer.		Those who are ready may record their own calculations
Uses language of more and fewer to compare two sets of objects	Are there more yellow or red spots? Are there fewer red or yellow spots?	Use a number line to say how many fewer a given number is.	Identifying one more or less on a number track

Subtraction- Year 1

Vocabulary: equal to, take, take-away, less, minus, subtract, leaves, distance between, how many more, how many fewer/less than, most, least count back, how many left, how much less is...

Objectives	Concrete	Pictorial	Abstract
Subtract onedigit and twodigit numbers to 20 , including 0. Taking away ones	Use physical objects, counters, cubes to show how objects can be taken away.	Cross out drawn objects to show what has been taken away.	$7-4=3$ $16-9=7$
Counting back	Make the larger number in the subtraction. Move the beads along the bead strings as you count backwards in ones. Use the counters and move them away from the group as you take away counting backwards as you go.	Count back on a number line or track. Start at the bigger number and count back the smaller number showing the jumps on the number line.	Put 13 in your head, count back 4. What number are you at? (Use your fingers to help you)

St Joseph's Otley - Calculations Policy

St Joseph's Otley - Calculations Policy

Make 10	$14-9=$ Make 14 on the ten frames. Take away the four to make 10 and then takeaway one more so you have taken away 5 . You are left with the answer 9.	$13-7=6$ 3 14 Start at 13 , takeaway 3 to reach 10 . Then takeaway the remaining 4 so you have taken away 7 altogether. You have reached your answer.	How many do we take off to reach the next 10 ? How many do we have left to take off?

Subtraction- Year 2

Vocabulary: subtrahend, minuend, equal to, take, take-away, less, minus, subtract, leaves, distance between, how many more, how many fewer/less than, most, least count back, how many left, how much less is, difference, count on, strategy, partition, tens, ones

Objective and Strategy	Concrete	Pictorial	Abstract
Subtract a twodigit number and ones, a two digit number and tens, two twodigit numbers Partitioning to subtract without regrouping: 'Friendly numbers'	 $34-13=21$ Partition the number when subtracting. First subtract the ones and then the tens (no regrouping) The calculation will be shown alongside the manipulative used	Children draw representations of Base 10 and cross out to show subtraction. $43-21=22$	$43-21=22$ Recording subtraction in columns supports place value and prepares for formal written methods with larger numbers. Toward the end of the year, children move to more formal recording using partitioning method: $\begin{aligned} & 43-21=22 \\ & 40 \text { and } 3 \\ & -20 \text { and } 1 \\ & \hline 20 \text { and } 2 \\ & \hline \end{aligned}$
Make ten strategy counting on	Use a bead bar or bead strings to model counting to next ten and the rest.	Use a number line to count on to next ten and then the rest.	$\begin{aligned} & 93-76=17 \\ & 76+\left(\begin{array}{c} 4 \\ 10 \\ 80+80 \\ 90+ \\ 3 \end{array}=90\right. \\ & 4+3+10=17 \end{aligned}$

St Joseph's Otley - Calculations Policy

Subtraction- Year 3

Vocabulary: minuend, subtrahend, difference, equal to, take, take-away, less, minus, subtract, leaves, distance between, how many more, how many fewer/less than, most, least count back, how many left, how much less is...difference, count on, strategy, partition, hundreds, tens, ones, tenths

Children should begin with the expanded form.

$$
\begin{gathered}
47-24=23 \\
-\frac{40+7}{20+4} \\
\hline 20+3 \\
\hline
\end{gathered}
$$

Moving onto a more formal way as below.

When using the formal method, ensure the correct vocabulary is used. For example:

9 ones subtract 5 ones equals 4 ones. 5 tens subtract 0 tens equals 5 tens. 2 hundred subtract

1 hundred equals 1 hundred.
(Use the place values units)

Subtraction- Year 4

Vocabulary: minuend, subtrahend, difference, equals, to, take, take-away, less, minus, subtract, leaves, distance between, how many more, how many fewer/less than, most, least count back, how many left, how much less is...difference, count on, strategy, partition, thousands, hundreds, tens, ones, tenths, hundredths.

Objective and Strategy	Concrete	Pictorial	Abstract
Subtract numbers with up to 4 digits using the formal written methods appropriate of columnar subtraction where appropriate Year 4 subtraction with up to 4 digits.	Model process of exchange using Numicon, base ten and then move to PV counters. The calculation will be shown alongside the model chosen to see the connection	Children to draw pv counters and show their exchange-see Y3 The calculation will be shown alongside the model chosen to see the connection.	This will lead to an understanding of subtracting any number including decimals.
Introduce decimal subtraction including the context of money.	Children to be encouraged to use counters to represent numbers and take counters away to subtract. $0.42-0.3=$ \qquad	When confident, children can find their own way to record the exchange/ regrouping. Tommy has $£ 1$ and 72 p. Rosie has $£ 2$ How much more money does Rosie have than Tommy? Number lines can be used.	Subtracting money using column subtraction. Make sure children have a strong understanding of PV and decimal point.

St Joseph's Otley - Calculations Policy

Subtraction- Year 5/6

Vocabulary: minuend, subtrahend, difference, equals, to, take, take-away, less, minus, subtract, leaves, distance between, how many more, how many fewer/less than, most, least count back, how many left, how much less is...difference, count on, strategy, partition, millions, hundred thousands, ten thousands, thousands, hundreds, tens, ones, tenths, hundredths, thousandths

Objective and Strategy	Concrete	Pictorial	Abstract
Subtract with at least 4 digits, including money and measures. Subtract with increasingly large and more complex numbers and decimal values (up to 3 decimal place).	See Year 4	See Year 4	$\begin{array}{r} { }^{140} 8 \not 8,699 \\ -\quad 89,949 \\ \hline 60,750 \\ \hline 710.5 \cdot 3419 \mathrm{~kg} \\ -\quad 36 \cdot 080 \mathrm{~kg} \\ \hline 69 \cdot 339 \mathrm{~kg} \end{array}$

St Joseph's Otley - Calculations Policy

Multiplication-EYFS

Vocabulary: groups of, lots of, times, array, altogether, multiply, multiplier, multiplicand, product, repeated addition

Objectives	Concrete	Pictorial	Abstract
Solve problems including doubling.	Counting and other maths resources for children to make 2 equal groups. Double 1	 Pictures and icons that encourage children to see concept of doubling as adding two equal groups.	$1+1=$ $7+7=$ $2+2=$ $8+8=$ $3+3=$ $9+9=$ $4+4=$ $10+10=$ $5+5=$ $11+11=$ $6+6=$ $12+12=$ Addition calculations to model adding two equal groups.

St Joseph's Otley - Calculations Policy

Multiplication- Year 1			
Vocabulary: groups of, lots of, times, array, altogether, multiply, multiplier, multiplicand, product, repeated addition			
Objective and Strategy	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manipulatives including cubes and Numicon to demonstrate doubling. double 4 is 8 $4 \times 2=8$ $\begin{aligned} & a+\square=\square \\ & \square+\square=\square \\ & \square+\square=\square \end{aligned}$	Draw pictures to show how to double numbers. Double 4 is 8	Partition a number and hen double each part before recombing it back together.
Counting in multiples	Count in multiples supported by concrete objects	Use a number line or picture to continue support in counting in multiples.	Count in multiples of a number aloud. For counting in twos, you may even begin by whispering the odds and shouting evens. Write sequence with multiples of numbers. $\begin{gathered} 2,4,6,8,10 \\ 5,10,15,20,25,30 \end{gathered}$ You can continue to support children by having a pictorial or concrete, only move on when children are ready.

St Joseph's Otley - Calculations Policy

Repeated addition	Use different objects to add equal groups.	Use objects and number sentence \qquad \qquad alongside a number line.	Children to write addition sentence alongside pictures.
Understanding arrays	Use objects laid out in arrays to find the answers to 2 lots 5,3 lots of 2 etc.	Draw a representation of arrays to show understanding.	$\begin{gathered} 3 \times 2=6 \\ 2 \times 5=10 \end{gathered}$ Writing out multiplication sentence alongside arrays. $3 \times 2=2+2+2=6$ Show children how the arrays link to multiplication sentence.

St Joseph's Otley - Calculations Policy

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Multiplication- Year 2} \\
\hline \multicolumn{4}{|l|}{Vocabulary: multiplier, multiplicand, product, groups of, lots of, times, array, altogether, multiply, repeated addition, multiplied by, repeated addition, sets of, equal groups, times as big as, commutative.} \\
\hline Objective and Strategy \& Concrete \& Pictorial \& Abstract \\
\hline Counting in multiples of 2 , 3, 4, 5, 10 from 0 (repeated addition) \& Count the groups as children are skip counting, children may use their fingers as they skip counting. Use bar models.
\[
5+5+5+5+5+5+5+5=40
\] \& Number line, counting sticks and bar models should be used to show representations of counting in multiples. \& \begin{tabular}{l}
Count in multiples of a number aloud. \\
Write a sequence with multiples of numbers.
\[
\begin{aligned}
\& 0,2,4,6,8,10 \\
\& 0,3,6,9,12,15 \\
\& 0,5,10,15,20,25,30
\end{aligned}
\]
\[
4 \times 3=
\]
\(\square\)
\end{tabular} \\
\hline Multiplication is commutative \& \begin{tabular}{l}
Create arrays using counters, cubes, Numicon, animals, ect. \\
Pupils should understand that an array can represent different equation and that, as multiplication is commutative, the order of the multiplication doesn't affect the answer.
\end{tabular} \& Use representations of arrays to show different calculations and explore commutativity. \& \begin{tabular}{l}
Use an array to write multiplication sentences and reinforce repeated addition.

$15=3 \times 5$

$15=5+5+5$
$15=5 \times 3$
$15=3+3+3+3+3$
\end{tabular}

\hline
\end{tabular}

St Joseph's Otley - Calculations Policy

St Joseph's Otley - Calculations Policy

Multiplication- Year 3

Vocabulary: Multiplier, multiplicand, product, groups of, lots of, times, array, altogether, multiply, multiplied by, repeated addition, sets of, equal groups, times as big as, commutative, product, multiples of, scale up, inverse

Objective and Strategy	Concrete	Pictorial	Abstract
Multiplying two digit number by a one digit number Area model method progressing to the formal method. Solving problems including missing number problems.	Show the links with arrays to first introduce the grid method. 4 rows od 10 4 rows of 3 Then move on to using Base 10 to move towards a more compact method. 4 rows of 13 Move on to place value counters to show how we are finding groups of a number using the area model. Add up each column, starting with the ones making any exchanges needed. The calculation will be shown alongside the model chosen to see the connection.	Children can represent their work with place value counter in a way that they understand. They draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below. Bar models are used to explore missing numbers. $4 \times \square=20$	Start with multiplying by one digit numbers and showing the clear addition alongside the grid. $\begin{array}{l\|ll\|l\|l\|} 1 & 8 \times 3=5 \\ \times & 1 & 0 & 8 \\ \hline 3 & 3 & 0 & 2 & 4 \end{array}$ Children to add up each column to find the answer. When ready, move on to two digit times by a one digit. TO $\times 0$

St Joseph's Otley - Calculations Policy

St Joseph's Otley - Calculations Policy

Using known multiplication facts Concrete objects aid children to develop conceptual understanding	Use arrays to show how multiplication can be broken down into easier know facts. Use multiplication sentence alongside. Children can used known facts to help them solve multiplication problems. If they know 3×4, they should know 30×4 or 3×40, as the calculation is time times greater, then the answer should be ten time greater. The array above is a great way to show this.	Children should draw arrays and partition them into known facts.	Children will then begin to break down: 24×4 could be partitioned down these ways: $\begin{gathered} 12 \times 4=48 \\ 12 \times 4=48 \\ \text { altogether }=96 \end{gathered}$ or $\begin{gathered} 20 \times 4=80 \\ 4 \times 4=16 \\ \text { altogether }=96 \end{gathered}$ or $\begin{gathered} 10 \times 4=40 \\ 10 \times 4=40 \\ 4 \times 4=16 \\ \text { altogether }=96 \end{gathered}$ Children need to be explicitly shown a variety of ways so they have the understanding and knowledge to do it for themselves.

St Joseph's Otley - Calculations Policy

Multiplication- Year 4

Vocabulary: Multiplier, multiplicand, product, groups of, lots of, times, array, altogether, multiply, multiplied by, repeated addition, sets of, equal groups, times as big as, commutative, product, multiples of, scale up, inverse

Objective and Strategy	Concrete	Pictorial	Abstract
Using known multiplication facts Lots of work needs to be done before moving on to multiplying 3 digit times 1 digit	See Year 3	Bar models can support known facts. Children should begin to think about known facts linked to this multiplication. This needs to be explicitly taught.	See Year 3
Multiply two digit and three-digit numbers by a one-digit number using formal written layout Grid method recap from year 3 for 2 digits $\times 1$ digit Multiplying numbers by 1 digit (year 4 expectation)	Recap the area model (array).	Children can represent their work with place value counter in a way that they understand. They can draw the counter using different colours, different amounts, or circles in the different PV columns to show their thinking.	$\mathrm{HTO} \times \mathrm{O}$$135 \times 5=675$$x$ 1 0 0 3 0 5 5 5 0 0 1 5 0$\| 2$5 Children to add up each column to find the answer.

St Joseph's Otley - Calculations Policy

Formal method of column multiplication.
 Concrete MUST be understood before moving
 on.

Use place value counters to show how we are finding groups of a number. In the place value grid below, we know our multiplier is 4 , so we need 4 rows of 126 .

$4 \times 126=$

Each row will be filled with place value counters making up 126.

Add up each column starting with the ones and make any exchanges needed.

Exchange the 20 ones for 2 tens. Then the 10 tens for 1
hundred.

Then, you have your answer.

Model	Calculation	Show calculation alongside

This grid/area model method can be used to help with the expanded column multiplication in the abstract.

x	100	20	4
5	500	100	20

Bar modelling and number lines can support children when solving problems with multiplication alongside the formal written methods.

Expanded multiplication allows children to write down each step.

When children have shown good understanding using this method, they can move on to the compact method using the exchange row/box.

St Joseph's Otley - Calculations Policy

Multiplication- Year 5/6

Vocabulary: Multiplier, multiplicand, product, groups of, lots of, times, array, altogether, multiply, multiplied by, repeated addition, sets of, equal groups, times as big as, commutative, product, multiples of, scale up, inverse, derive, factor pairs, composite numbers, prime numbers, factors, squared, cubed

Objective and Strategy	Concrete	Pictorial	Abstract
Using known multiplication facts Lots of work needs to be done before moving on to multiplying 3 digit times 1 digit	See Year 3	Bar models can support known facts. Children should begin to think about known facts linked to this multiplication. This needs to be explicitly taught.	See Year 3
Long multiplication Expanded Method including area model.	Children can continue to be supported by place value counters at the stage of multiplication. It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.	Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	Start with long multiplication, reminding the children about lining up their numbers clearly in columns. If it helps, children can write out the multiplication next to the answer. This moves to the more compact method.

St Joseph's Otley - Calculations Policy

Long multiplication compact method	Manipulative should still be used to consolidate PV understanding. The calculation should be modelled alongside.	Area/grid model should be used to help with breaking down the multiplications and PV understanding.	Children move on to compacted method. Multiply the first factor by the ones number and include any exchanges in the exchange box. Then multiply the first factor by the tens number. Include exchanges again.
	Model ${ }^{\text {Calculation }}$	$24 \times 16=384$	
			HTh TTh Th H T O
		x 2 0 4 10 2 0 0 4	3151
			x 36
		6112012	$\times 2$
		This can be used for more than 2 digit by 2 digit.	$+\frac{18906}{1}(3151 \times 6)$
			94530 (3151×30)
			11
			113,4 36
			Once multiplied, you add the two products up to get the answer.
			Children should cross our exchanges within the multiplication. They may also write the multiplication next to the answer.
Year 6	Use PV counters to help with understanding of exchanging decimals.	Children can draw their own representations to show their	Remind children that the ones digit belongs in the ones column. Line up the decimal
Multiply decimal up to 2 decimal	Ones \quad Tenths	understanding.	point the tenths and hundredths column.
places by a single	(1) (1) - (11)		T O Tths Hths
digit.	(1) 11 - 110		12.41
	(1) (1) © (1)		5
			12
			62.05

Divisision

dividend
$\frac{24}{6}=4$
divisor
quotient

$\begin{aligned} 24 \div 6 & =4 \\ \downarrow & \text { quotient }\end{aligned}$
divisor
$\xrightarrow{\text { dividend }}$

Division- EYFS

Vocabulary: dividend, divisor, quotient, share, share equally, one each, two each..., group, groups of, lots of, array

Objectives and strategy	Concrete	Pictorial	Abstract
Solve problems including: halving and sharing. - Halving a whole, halving a quantity of objects. - Sharing a quantity of objects.	Children have the opportunity to physically cut objects, food or shapes in half. Counting and other maths resources can be used to share into two equal groups.	Pictures and icons that encourage children to see concept of halving in relation to subitising, addition and subtraction knowledge. Example: Knowing 4 is made of 2 groups of 2 , so half of 4 is 2 .	Use part part whole and bar model representation to show the equal groups.

St Joseph's Otley - Calculations Policy

St Joseph's Otley - Calculations Policy

Division- Year 1					
Vocabulary: dividend, divisor, quotient, share, share equally, one each, two each..., group, groups of, lots of, array, divide					
Objectives and strategy	Concrete	Pictorial	Abstract		
Division as sharing (sharing objects into groups)	Use practical objects to share into equal groups. These could be mathematical object or non.	Children use pictures or shapes to share quantities. $8 \div 2=4$ Children use bar models to show and support understanding. $8 \div 4=2$ Sharing: 12 shared between 3 is 4	Introduce th Continue to show divisio	the divis $12 \div 4$ o use ba ion. 9	symbol. del to 3

St Joseph's Otley - Calculations Policy

St Joseph's Otley - Calculations Policy

Division- Year 2

Vocabulary: dividend, divisor, quotient, share, share equally, one each, two each..., group, groups of, lots of, array, divide,
divided by, divided into, division, grouping, number line, left, left over

Division- Year 3

Vocabulary: dividend, divisor, quotient, share, share equally, one each, two each..., group, groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, remainder

Objective and Strategy	Concrete	Pictorial			Abstract
Division as grouping	Use cubes, counters, objects or place value counters to aid understanding. Make 24 using the numicon, underneath group them in groups of 6 . 24 divided into groups of $6=4$ Using place value counters, 96 divided into groups of $3=32$	Use b proble	delling to aid so \square 20 l $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	division	How many groups of 6 in 24 ? $24 \div 6=4$

St Joseph's Otley - Calculations Policy

St Joseph's Otley - Calculations Policy

Divide numbers that involve exchanging between the tens and ones. NO REMAINDERS YET	Share the tens first and exchange the remaining tens for the ones. Then share the ones. $42 \div 3=14$	Use part-part whole model to use known facts - teach this explicitly. Children may use pictorial representation for the place value counters, alongside the part-whole model	$\begin{aligned} & 96 \div 8 \\ & 96 \div 4 \\ & 96 \div 3 \\ & 96 \div 6 \end{aligned}$ Compare the statements using $<,>$ or $=$ $\begin{aligned} & 48 \div 4 \bigcirc 36 \div 3 \\ & 52 \div 4 \bigcirc 42 \div 3 \\ & 60 \div 3 \bigcirc 60 \div 4 \end{aligned}$
Division with a remainder	$14 \div 3=$ Divide objects between groups and see how much is left over.	Jump forward in equal jumps on a number line then see how many more you need to jump to find the remainder. Draw dots/circles and group them to divide an amount and clearly show the remainder (only efficient with a lower number).	Complete written division and show the remainder using r .

St Joseph's Otley - Calculations Policy

Division- Year 4

Vocabulary: dividend, divisor, quotient, share, share equally, one each, two each..., group, groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, remainder, division facts, inverse, derive.

Objective and Strategy	Concrete	Pictorial	Abstract
Divide up to 3 digit number by 1 digit number. Short division no remainders (NOT BUS STOP)	$96 \div 3$ Use the place value counters to divide using the place value grid and the short division alongside. Start by sharing the highest value place value counter. Once shared look at one group on the PV grid and see there is 3 tens on each group so 9 tens divided by 3 is 3 tens - write the 3 (tens) above the 9 (tens).	Draw diagrams with dots and circles to help divide into equal groups. Encourage children to count in multiplies for efficiency. Draw place value grid with drawings to represent counters or Base Ten.	Begin with divisions that divide equally with no remainder. $4 \longdiv { 1 9 } \quad \frac { 2 4 7 } { 3 \longdiv { 7 ^ { 1 } 4 7 } }$ Children should be aware that a 0 is used to keep place value, if the number is not divisible. $\begin{array}{r} 093 \\ 8 \longdiv { 7 ^ { 7 } 4 ^ { \prime } 4 } \end{array}$

St Joseph's Otley - Calculations Policy

	Share the ones -6 ones divided by 3 is 2 ones. Write 2 (ones) above the 6 (ones) in the short division method. With an exchange Again, start with highest value PV counters, share them out equally (count in multiples). One ten is left over. Exchange the 1 ten for 10 ones.		

St Joseph's Otley - Calculations Policy

Division- Year 5

Vocabulary: dividend, divisor, quotient, share, share equally, one each, two each..., group, groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, remainder, division facts, inverse, derive, short division

Objective and Strategy	Concrete	Pictorial	Abstract
Divide by at least 4 digit numbers and interpret remainders.	See Year 4 for concrete	See Year 4 for pictorial	$\frac{0663}{8 \longdiv { 5 ^ { 5 } 3 ^ { 5 } 0 ^ { 2 } 9 }} \cdot 5$
Division using part-part whole method			

Division- Year 6

Vocabulary: dividend, divisor, quotient, share, share equally, one each, two each..., group, groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, remainder, division facts, inverse, derive, short division, long division

Objective and Strategy	Concrete		Pictorial	Abstract
Short division	See Year 4/5		See Year 4/5	See Year 4/5
Short division finding fractions or decimals				$\begin{gathered} 1110.5 \\ 8 \begin{array}{\|cc\|} \hline 8 & 8 \end{array} \\ 884 \div 8=110.5 \\ \text { or } \\ 884 \div 8=1101 / 2 \end{gathered}$
	Abstract			
Long division	Long division Answer: 28 remainder 12	$432 \div 15$ becomes 2 8 $\mathbf{4}$ $\mathbf{3}$ 2 3 0 0 15×20 1 3 2 1 2 0 15×8 1 2 $\frac{12}{15}=\frac{4}{5}$ Answer: $28 \frac{4}{5}$	$432 \div 15$ becomes Answer: 28.8	Write the 15 times tables down: $\begin{gathered} 15 \\ 45 \\ 30 \\ 60 \\ 75 \\ 90 \\ 105 \\ 120 \\ 135 \end{gathered}$

St Joseph's Otley - Calculations Policy

Long division
with no
remainders

Step by Step

St Joseph's Otley - Calculations Policy

Long division
with remainder

Step by Step

St Joseph's Otley - Calculations Policy

